

 This project has received funding from the European Union's Horizon 2020 research
and innovation programme under Grant Agreement n°957852

Virtual Power Plant for Interoperable and Smart isLANDS

VPP4Islands

LC-SC3-ES-4-2020

GA 957852

 Deliverable Report

Deliverable ID D5.4 Version 1.2

Deliverable name AAI Infrastructure API Specification and Prototype

Lead beneficiary Dominic Heutelbeck (FTK)

Contributors Dominic Heutelbeck

Reviewer Habib NASSER (RDUIP), E.Metai (BC2050)

Due date 31/03/2022

Date of final version 03/05/2022

Dissemination level Public

Document approval Seifeddine Ben
Elghali

Date 03/05/2022

Ref. Ares(2022)3588979 - 11/05/2022

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 2

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Acknowledgement: VPP4ISLANDS is a Horizon 2020 project funded by the European

Commission under Grant Agreement no. 957852.

Disclaimer: The views and opinions expressed in this publication are the sole responsibility of

the author(s) and do not necessarily reflect the views of the European Commission

REVISION AND HISTORY CHART

Version Date Main Author(s) Summary of changes

1.0 03.12.2021 Dominic Heutelbeck First Version

1.1 07.12.2021 Dominic Heutelbeck Incorporate review
comments of RDUIP

1.2 03.05.2022 Dominic Heutelbeck Incorporate review
comments from BC2050

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 3

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Table of Contents

EXECUTIVE SUMMARY ... 6

1. INTRODUCTION .. 7

2. SAPL .. 8

2.1 Authorization Subscriptions ... 9

2.2 Structure of a SAPL Policy ...10

2.3 Authorization Decisions ..11

2.4 Accessing Attributes ..11

2.5 Reference Architecture ..12

2.5.1 Policy Enforcement Point (PEP) ..12

2.5.2 Policy Decision Point (PDP) ..13

2.5.3 Policy Administration Point (PAP) ...14

2.6 Publish / Subscribe Protocol ...14

2.6.1 SAPL Authorization Subscription ...14

2.6.2 SAPL Authorization Decision ..14

2.6.3 Policy Evaluation ...16

2.6.4 Multi-Subscriptions ...17

2.7 PDP APIs ...18

2.7.1 HTTP Server-Sent Events API ..18

3. THE SAPL POLICY LANGUAGE ...21

4. TESTING SAPL POLICIES ...21

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 4

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

4.1 Usage scenarios ..21

4.1.1 Embedded PDP ..21

4.1.2 SAPL-Server ...21

4.2 Unit-Tests ...22

4.3 Policy-Integration-Tests ..22

4.4 Writing test cases...23

4.5 Code-Coverage Reports via the SAPL-Maven-Plugin ..24

5. HYBRID AUTHORIZATION PROTOTYPE ..24

6. CONCLUSION ...27

7. REFERENCES ..28

List of Tables

Table 1: List of Abbreviations …………………………………………………………………………..5

List of Figures
Figure 1: The AAI in the Context of the VPPI-Node (Garner, Jansen, & Dehouche, 2021) 7

Figure 2: Sample Authorization Subscription .. 9

Figure 3: Sample Policy 1 ...10

Figure 4: Sample Authorization Decision...11

Figure 5: Sample Policy 2 ...11

Figure 6: Reference Architecture ..12

Figure 7:Multi-Subscriptions - JSON Structure ..17

Figure 8:Single Authorization Decision with Associated Subscription ID - JSON Structure17

Figure 9: Multi-Decision - JSON Structure ...18

Figure 10: Test fixture setup ..22

Figure 11: Test fixture setup for integration tests ...22

Figure 12: Test structure ...23

Figure 13: Connecting Ethereum as a Policy Information Point ...24

Figure 14: The Generic Ethereum PIP API ..26

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 5

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Table 1: List of abbreviations and Acronyms

Abbreviation Meaning

ABAC Attribute-based Access Control

ASBAC Attribute stream-based Access Control

BC2050 Blockchain2050

DLT Digital Ledger Technologies

DSL Domain Specific Language

EBAC Entity-based access control

FTK FTK Forschungsinstitut für Telekommunikation und Kooperation e.V.

JSON JavaScript Object Notation

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RAP Resource Access Point

RBAC Role-based Access Control

SAPL Streaming Attribute Policy Language

SSE Server-Sent Events

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 6

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

EXECUTIVE SUMMARY

This Deliverable contains the specifications of the SAPL Policy language and documentation of

interfaces for integrating applications using a Server-Sent-Events (SSE)-based web API, and

Java applications with a specific focus on the Spring Ecosystem.

The SAPL policy language is a feature-rich extensible domain specific language for expressing

access control policies based on the Attribute-Based Access Control (ABAC) or more specific,

Attribute Stream-Based Access control (ASBAC). This document provides a thorough introduction

into the language, usable as a reference guide during the development of access rights policies.

SAPL is implemented in an Open-Source Authorization Engine which offers several interfaces for

integrating external data sources, for realizing embedded or cloud-based policy decision points

(PDPs), and for implementing policy enforcement points (PEPs) within applications. The

fundamental SAPL engine was brought into the project by FTK as background IP. With Virtual

Power Plant as a part of the critical infrastructure of the islands, new requirements arose with

regards to validation of correctness of access rights policies. Therefore, a complete testing

framework for policies has been developed allowing developers to treat policies the same way

they treat application code with regards to testing. This resulted in opportunities for seamless

integration of policy authoring and administration in a GitOps style DevOps, Continious Delivery

and Integration environment.

For the hybrid authorization approach integrating with the distributed ledger technologies and

smart contracts driving the VPP4ISLANDS scenarios together with the other partners, BC2050

has identified Ethereum and LTO in tandem as a platform for the DLT-based services.

This document describes SAPL, key APIs, and the prototypical integration with the Ethereum

Blockchain required for adopting SAPL within the VPP4ISLANDS development processes.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 7

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

1. INTRODUCTION

In VPP4ISLANDS, the hybrid Authentication and Authorization Infrastructure is a central

component of the VPPI-Node, responsible for the authorization of access to the APIs exposed by

the node. The AAI implements Attribute Stream-based Access Control (ASBAC) (Heutelbeck,

Attribute stream-based access control (ASBAC)-functional architecture and patterns, 2019) to

accommodate dynamic requirements of the APIs. By exposing state of the distributed ledger

technologies (DLT) all APIs can use the state of smart contracts on the blockchain for making

access control decisions without the need for additional DLT intrgrations, if the respective services

to not directly interact with the DLT otherwise. This way of allowing for local authorization policies

using ASBAC and trusted smart contracts together is what makes the VPP4I AAI hybrid.

Figure 1: The AAI in the Context of the VPPI-Node (Garner, Jansen, & Dehouche, 2021)

This deliverable is structured as follows, first ASBAC and the SAPL (Streaming Attribute Policy

Language) are introduced together with the key system integration APIs for authorization. Then

Finally, a general prototype implementation of the DLT/ASBAC integration is discussed.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 8

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

2. SAPL

SAPL (Streaming Attribute Policy Language) (Heutelbeck, The Structure and Agency Policy

Language (SAPL) for Attribute Stream-Based Access Control (ASBAC), 2019) describes a

domain-specific language (DSL) for expressing access control policies and a

publish/subscribe protocol based on JSON. Policies expressed in SAPL describe conditions

for access control in applications and distributed systems. The underlying policy engine

implements a variant of Attribute-based Access control (ABAC) which enables processing of data

streams and follows reactive programming patterns. Namely, the SAPL policy engine implements

Attribute Stream-based Access Control (ASBAC).

A typical scenario for the application of SAPL would be a subject (e.g., a user or system)

attempting to take action (e.g., read or cancel an order) on a protected resource (e.g., a domain

object of an application or a file). The subject makes a subscription request to the system (e.g.,

an application) to execute the action with the resource. The system implements a policy

enforcement point (PEP) protecting its resources. The PEP collects information about the

subject, action, resource, and potential other relevant data in an authorization subscription

request and sends it to a policy decision point (PDP) that checks SAPL policies to decide if it

grants access to the resource. This decision is packed in an authorization decision object and

sent back to the PEP, which either grants access or denies access to the resource depending on

the decision. The PDP subscribes to all data sources for the decision, and new decisions are sent

to the PEP whenever indicated by the policies and data sources.

There exist several proprietary platforms dependent or standardized languages, such as XACML,

for expressing policies. SAPL brings several advantages over these solutions:

• Universality. SAPL offers a standard, generic, platform-independent language for

expressing policies.

• Separation of Concerns. Applying SAPL to a domain model is relieved from modeling

many aspects of access control. SAPL favors configuration at runtime over

implementation and re-deployment of applications.

• Modularity and Distribution. SAPL allows managing policies in a modular fashion

allowing the distribution of authoring responsibilities across teams.

• Expressiveness. SAPL provides access control schemata beyond the capabilities of most

other practical languages. It allows for attribute-based access control (ABAC), role-based

access control (RBAC), forms of entity-based access control (EBAC), and parameterized

attribute access and attribute streaming.

• Human Readability. The SAPL syntax is designed from the ground up to be easily

readable by humans. Basic SAPL is easy to pick up for getting started but offers enough

expressiveness to address complex access control scenarios.

http://json.org/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 9

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

• Transformation and Filtering. SAPL allows transforming resources and filtering data

from resources (e.g., blacken the first digits of a credit card number or hiding birth dates

by assigning individuals into age groups).

SAPL supports session and data stream-based applications and offers low-latency

authorization for interactive applications and data streams.

SAPL supports JSON-driven APIs and integrates easily with modern JSON-based APIs. The

core data model of SAPL is JSON offering straightforward reasoning over such data and simple

access to external attributes from RESTful JSON APIs.

SAPL supports Multi-Subscriptions. SAPL allows bundling multiple authorization subscriptions

into one multi-subscription, thus further reducing connection time and latency. The following

sections will explain the basic concepts of SAPL policies and show how to integrate SAPL into a

Java application easily. Afterward, this document explains the different parts of SAPL in more

detail.

2.1 Authorization Subscriptions

A SAPL authorization subscription is a JSON object, i.e., a set of name/value pairs or attributes.

It contains attributes with the names subject, action, resource, and environment. The values

of these attributes may be any arbitrary JSON value, e.g.:

{
 "subject" : {
 "username" : "alice",
 "tracking_id" : 1234321,
 "nda_signed" : true
 },
 "action" : "HTTP:GET",
 "resource" : "https://vpp4islands.eu/api/meters/123",
 "environment" : null
}
Figure 2: Sample Authorization Subscription

This authorization subscription expresses the intent of the user alice, with the given attributes, to

HTTP:GET the resource at https://vpp4islands.eu/api/meters/123. This SAPL

authorization subscription can be used in a RESTful API, implementing a PEP protecting the API’s

request handlers.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 10

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

2.2 Structure of a SAPL Policy

A SAPL policy document generally consists of:

• the keyword policy, declaring that the document contains a policy (opposed to a policy

set; more on policy sets see below)

• a unique (for the PDP) policy name

• the entitlement, which is the decision result to be returned upon successful evaluation of

the policy, i.e., permit or deny

• an optional target expression for indexing and policy selection

• an optional where clause containing the conditions under which the entitlement (permit

or deny as defined above) applies

• optional advice and obligation clauses to inform the PEP about optional and mandatory

requirements for granting access to the resource

• an optional transformation clause for defining a transformed resource to be used instead

of the original resource

A simple SAPL policy that allows alice to HTTP:GET the resource

https://vpp4islands.eu/api/meters/123 , describing a smart meter, could look as

follows (in a real-world scenario, this policy is too specific):

policy "permit_alice_get_meter123" (1)
permit resource =~ "^https://vpp4islands\.eu/api/meters.*" (2)
where (3)
 subject.username == "alice"; (4)
 action == "HTTP:GET";
 resource == "https://vpp4islands.eu/api/meters/123";
Figure 3: Sample Policy 1

1. This statement declares the policy with the name permit_alice_get_meter123.

The JSON values of the authorization subscription object are bound to the variables

subject, action, resource, and environment that are directly accessible in the policy.

The syntax .name accesses attributes of a nested JSON object.

2. This statement declares that if the resource is a string starting with

https://vpp4i.net/api/meters (using the regular expression operator =~) and

the conditions of the where clause applies, the subject will be granted access to

the resource. Note that the where clause is only evaluated if the condition of the

target expression evaluates to true.

https://sapl.io/docs/2.0.0-SNAPSHOT/sapl-reference.html#policy-set

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 11

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

3. This statement starts the where clause (policy body) consisting of a list of

statements. The policy body evaluates to true if all statements evaluate to true.

2.3 Authorization Decisions

The SAPL authorization decision to the authorization subscription is a JSON object as well. It

contains the attribute decision as well as the optional attributes resource, obligation, and

advice. For the introductory sample authorization subscription with the preceding policy, a SAPL

authorization decision would look as follows:

{
 "decision" : "PERMIT"
}
Figure 4: Sample Authorization Decision

The PEP evaluates this authorization decision and grants or denies access accordingly.

2.4 Accessing Attributes

In many use cases, the authorization subscription contains all the required information for making

a decision. However, the PEP is usually not aware of the specifics of the access policies and may

not have access to all information required for making the decision. In this case, the PDP can

access external attributes. The following example shows how SAPL expresses access to

attributes.

Extending the example above, in a real-world application, there will be multiple patients and

multiple users. Thus, policies need to be worded more abstractly. In a natural language, a suitable

policy could be Permit operators to HTTP:GET data about any meter. The policy addresses the

profile attribute of the subject, stored externally. SAPL allows to express this policy as follows:

policy "operators_get_meter"
permit
 action == "HTTP:GET" &
 resource =~ "^https://vpp4islands\.eu/api/meters/\d*$"
where
 subject.username.<user.profile>.function == "operator";
Figure 5: Sample Policy 2

In line 4 a regular expression is used for identifying a request to any meter’s data (operator =~).

The authorization subscription resource must match this pattern for the policy to apply.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 12

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

The policy assumes that the user’s function is not provided in the authorization subscription but

stored in the user’s profile. Accordingly, line 6 accesses the attribute user.profile (using an

attribute finder step .<finder.name>) to retrieve the profile of the user with the username

provided in subject.username. The fetched profile is a JSON object with a property named

function. The expression compares it to "operator".

Line 6 is placed in the policy body (starting with where) instead of the target expression. The

reason for this location is that the target expression block is also used for indexing policies

efficiently and therefore needs to be evaluated quickly. Hence it is not allowed to include

conditions that may need to call an external service.

2.5 Reference Architecture

The architecture of the SAPL policy engine is follows the terminology defined by RFC2904 "AAA

Authorization Framework".

Figure 6: Reference Architecture

2.5.1 Policy Enforcement Point (PEP)

The PEP is a software entity that intercepts actions taken by users within an application. Its task

is to obtain a decision on whether the requested action should be allowed and accordingly either

let the application process the action or deny access. For this purpose, the PEP includes data

describing the subscription context (like the subject, the resource, the action, and other

environment information) in an authorization subscription object which the PEP hands over to a

https://tools.ietf.org/html/rfc2904
https://tools.ietf.org/html/rfc2904

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 13

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

PDP. The PEP subsequently receives an authorization decision object containing a decision and

optionally a resource, obligations, and advice.

The PEP must let the application process the action if the decision is PERMIT. If the authorization

decision object also contains an obligation, the PEP must fulfill this obligation. Proper fulfillment

is an additional requirement for granting access. If the decision is not PERMIT or the obligation

cannot be fulfilled, the PEP must deny access. Policies may contain instructions to alter the

resource (like blackening certain information, e.g., credit card numbers). If present, the PEP

should ensure that the application only reveals the resource contained in the authorization

decision object.

A PEP strongly depends on the application domain. SAPL comes with a default PEP

implementation using a passed in constraint handler service to handle obligations and

advice contained in an authorization decision. Developers should integrate PEPs with the

platforms and frameworks they are using. SAPL ships with a set of modules for deep

integration with Spring Security and Spring Boot.

2.5.2 Policy Decision Point (PDP)

The PDP has to make an authorization decision based on an authorization subscription object

and the access policies it receives from a Policy Retrieval Point (PRP) connected to a policy

store. Beginning with the authorization subscription object, the PDP fetches policy sets and

policies matching the authorization subscription, evaluates them, and combines the results to

create and return an authorization decision object. There may be multiple matching policies that

might evaluate to different results. To resolve these conflicts, the administrator or developer using

a PDP must select a combining algorithm (e.g., permit-overrides stating that the decision will

be permit if any applicable policy evaluates to permit).

A policy may refer to attributes not included in the authorization subscription object. It will have to

obtain them from an external Policy Information Point (PIP). The PDP fetches those attributes

while evaluating the policy. To be able to access external PIPs, developers can extend the PDP

by adding custom attribute finders. Policies might also contain functions not included in the default

SAPL implementation. Developers may add custom functions by implementing Function

Libraries.

SAPL provides two simple PDP implementations: An embedded PDP with an embedded PRP

which can be integrated easily into a Java application, and a remote PDP client that obtains

decisions through a RESTful interface.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 14

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

2.5.3 Policy Administration Point (PAP)

The PAP is an entity that allows managing policies contained in the policy store. In the embedded

PDP with the Resources PRP, the policy store can be a simple folder within the local file system

containing .sapl files. Therefore, any access to files in this folder (e.g., FTP or SSH) can be seen

as a straightforward PAP. The PAP may be a separate application or can be included in an

existing administration panel.

2.6 Publish / Subscribe Protocol

The PDP receives an authorization subscription from a PEP and sends an authorization decision.

Both subscription and decision are JSON objects consisting of name/value pairs (also called

attributes) with predefined names. A PEP must be able to create an authorization subscription

and process an authorization decision object.

2.6.1 SAPL Authorization Subscription

A SAPL authorization subscription contains attributes with the names subject, resource, action,

and environment. Each attribute value can be any JSON value (i.e., an object, an array, a

number, a string, true, false, or null).

2.6.2 SAPL Authorization Decision

The SAPL authorization decision contains the attributes decision, resource, obligation, and

advice.

Decision

The decision tells the PEP whether to grant or deny access. Access should be granted only if the

decision is "PERMIT". The decision attribute can be one of the following string values with the

described meanings:

• "PERMIT": Access must be granted.

• "DENY": Access must be denied.

• "NOT_APPLICABLE": A decision could not be made because no policy is applicable to the

authorization subscription. The PEP should deny access in this case.

• "INDETERMINATE": A decision could not be made because an error occurred. The PEP

should deny access in this case.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 15

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Resource

The PEP knows for which resource it requested access. Thus, there usually is no need to return

this resource in the authorization decision object. However, SAPL policies may contain a

transform statement describing how the resource needs to be altered before it is returned to the

subject seeking permission. This can be used to remove or blacken certain parts of the resource

document (e.g., a policy could allow doctors to view patient data but remove any bank account

details as they can only be accessed by the accounting department). If a policy that evaluates to

PERMIT contains a transform statement, the authorization decision attribute resource contains

the transformed resource. Otherwise, there will not be a resource attribute in the authorization

decision object.

Obligation

The value of obligation contains assignments that the PEP must fulfill before granting or denying

access. As there can be multiple policies applicable to the authorization subscription with different

obligations, the obligation value in the authorization decision object is an array containing a list

of tasks. If the PEP is not able to fulfill these tasks, access must not be granted. The array items

can be any JSON value (e.g., a string or an object). Consequently, the PEP must know how to

identify and process the obligations contained in the policies. An obligation attribute is only

included in the authorization decision object if there is at least one obligation.

An authorization decision could, for example, contain the obligation to create a log entry.

In case the obligation is contained in a DENY decision, the access must still be denied. An

obligation in a DENY decision acts like advice because the unsuccessful handling of the

obligation cannot change the overall decision outcome.

Advice

The value of advice is an array with assignments for the PEP as well and works similar to

obligations with one difference: The fulfillment of the tasks is no requirement for granting access.

I.e., in case the decision is PERMIT, the PEP should also grant access if it can not fulfill the tasks

contained in advice. An advice attribute is only included in the authorization decision object if

there is at least one element within the advice array.

In addition to the obligation to create a log entry, a policy could specify the advice to inform the

system administrator via email about the access.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 16

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

2.6.3 Policy Evaluation

To come to the final decision included in the authorization decision object, the PDP evaluates all

existing policy sets and top-level policies (i.e., policies which are not part of a policy set) against

the authorization subscription and combines the results. Each policy set and policy evaluates to

PERMIT, DENY, NOT_APPLICABLE, or INDETERMINATE (see below). The PDP can be

configured with a combining algorithm which determines how to deal with multiple results. E.g.,

if access should only be granted if at least one policy evaluates to PERMIT and should be denied.

Otherwise, the algorithm deny-unless-permit could be used.

Available combining algorithms for the PDP are:

• deny-unless-permit

• permit-unless-deny

• only-one-applicable

• deny-overrides

• permit-overrides

The algorithm first-applicable is not available for the PDP since the PDP’s collection of policy

sets and policies is an unordered set.

https://sapl.io/docs/2.0.0-SNAPSHOT/sapl-reference.html#evaluation

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 17

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

2.6.4 Multi-Subscriptions

SAPL allows for bundling multiple authorization subscriptions into one multi-subscription. A multi-

subscription is a JSON object with the following structure:

{
 "subjects" : ["bs@vpp4islands.eu", "ms@vpp4islands.eu"],
 "actions" : ["read"],
 "resources" : ["file://vpp4islands/eu/record/islands/Grado",
 "file://vpp4islands/eu/record/islands/Bozcaada"],
 "environments" : [],

 "authorizationSubscriptions" : {
 "id-1" : { "subjectId": 0, "actionId": 0, "resourceId": 0 },
 "id-2" : { "subjectId": 1, "actionId": 0, "resourceId": 1 }
 }
}
Figure 7:Multi-Subscriptions - JSON Structure

It contains distinct lists of all subjects, actions, resources, and environments referenced by the

single authorization subscriptions being part of the multi-subscription. The authorization

subscriptions themselves are stored in a map of subscription IDs pointing to an object defining an

authorization subscription by providing indexes into the four lists mentioned before.

The multi-subscription shown in the example above contains two authorization subscriptions. The

user bs@vpp4islands.eu wants to read the file file://vpp4islands/eu/

record/islands/Grado , and the user ms@vpp4islands.eu wants to read the file

file://vpp4islands/eu/record/islands/Bozcaada.

The SAPL PDP processes all individual authorization subscriptions contained in the multi-

subscription in parallel and returns the related authorization decisions as soon as they are

available, or it collects all the authorization decisions of the individual authorization subscriptions

and returns them as a multi-decision. In both cases, the authorization decisions are associated

with the subscription IDs of the related authorization subscription. The following listings show the

JSON structures of the two authorization decision types:

{
 "authorizationSubscriptionId" : "id-1",
 "authorizationDecision" : {
 "decision" : "PERMIT",
 "resource" : { ... }
 }
}
Figure 8:Single Authorization Decision with Associated Subscription ID - JSON Structure

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 18

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

{
 "authorizationDecisions" : {
 "id-1" : {
 "decision" : "PERMIT",
 "resource" : { ... }
 },
 "id-2" : {
 "decision" : "DENY"
 }
 }
}
Figure 9: Multi-Decision - JSON Structure

2.7 PDP APIs

A SAPL PDP must expose a publish-subscribe API for subscribing via the subscription objects

laid out above. SAPL defines two specific APIs for that. One is an HTTP Server-Sent Events

(SSE) API for deploying a dedicated PDP Server, the other for using a PDP in reactive Java

applications. The Java API may be implemented by an embedded PDP or by using the SSE API

of a remote server.

2.7.1 HTTP Server-Sent Events API

A PDP to be used as a network service has to implement some HTTP endpoints. All of them

accept POST requests and application/json. They produce application/x-ndjson as Server-

Sent Events (SSE). A PDP server must be accessed over encrypted TLS connections. All

connections should be authenticated. The means of authentications are left open for the

organization deploying the PDP to decide or to be defined by a specific server implementation.

All endpoints should be located under a shared base URL, e.g., https://pdp.sapl.io/api/pdp/.

A PEP which is a client to the SSE PDP API encountering connectivity issues or errors, must

interpret this as an INDETERMINATE decision and thus deny access during this time of

uncertainty and take appropriate steps to reconnect with the PDP, using a matching back-off

strategy to not overload the PDP.

A PEP must determine if it can enforce obligations before granting access. It must enforce

obligation upon granting access at the point in time (e.g., before or after granting access) implied

by the semantics of the obligation, and it should enforce any advice at their appropriate point in

time when possible.

https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://pdp.sapl.io/api/pdp/

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 19

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Upon subscription, the PDP server will respond with an unbound stream of decisions. The client

must close the connection to stop receiving decision events. A connection termination by the

server is an error state and must be handled as discussed.

Decide

• URL: {baseURL}/decide

• Method: POST

• Body: A valid JSON authorization subscription

• Produces: A SSE stream of authorization decisions

Multi Decide

• URL: {baseURL}/multi-decide

• Method: POST

• Body: A valid JSON multi subscription

• Produces: A SSE stream of Single Authorization Decisions with Associated
Subscription ID JSON Objects

Multi Decide All

• URL: {baseURL}/multi-decide-all

• Method: POST

• Body: A valid JSON multi subscription

• Produces: A SSE stream of Multi Decision JSON Objects

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 20

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Implementations

The SAPL Policy engine comes with two implementations ready for deployment in an

organization:

• SAPL Server LT: This light (LT) PDP server implementation uses a configuration and

policies stored on a file system.

• SAPL Server CE: This community edition (CE) PDP server implementation uses a

relational database (MariaDB) for persistence configuration and offers a convenient

graphical Web interface to manage policies, configuration, and clients.

In addition, libraries for embedding the PDP in applications are provided. These components will

be described in more detail in D5.5.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 21

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

3. THE SAPL POLICY LANGUAGE

SAPL defines a feature-rich domain-specific language (DSL) for creating access policies. Those

access policies describe when access requests will be granted and when access will be denied.

The underlying concept to describe these permissions is an attribute-based access control model

(ABAC): A SAPL authorization subscription is a JSON object with the attributes subject, action,

resource and environment each with an assigned JSON value. Each of these values may be a

JSON object itself containing multiple attributes. Policies can use of Boolean conditions referring

to those attributes (e.g., subject.username == "admin").

However, a role-based access control (RBAC) system in which permissions are assigned to a

certain role and roles can be assigned to users can be created with SAPL as well.

A full documentation/specification of the language can be found on: https://sapl.io/docs/2.0.0-

SNAPSHOT/sapl-reference.html.

4. TESTING SAPL POLICIES

The power grid infrastructure controlled by VPP4ISLANDS components and services

The SAPL policy engine provides a framework to test SAPL policies. This framework supports

unit tests of a single SAPL document or policy integration test of all SAPL policies of an application

via the PDP interface.

4.1 Usage scenarios

With the SAPL test framework, developers can test SAPL policies whether they use SAPL via an

embedded PDP in an application or via a central SAPL server.

4.1.1 Embedded PDP

If an application uses an embedded PDP, SAPL policy tests are treated like traditional unit and

integration tests. Developers can deploy policy tests alongside these tests and execute them

identically via the Maven lifecycle on a local workstation or in a CI pipeline.

4.1.2 SAPL-Server

The following repository GitOps Demo showcases a deployment pipeline with SAPL policy tests

in a GitOps-Style for the headless SAPL-Server-LT. Here every change to the policies is

introduced via a pull request on the main branch. The CI pipeline executes the policy tests for

https://sapl.io/docs/2.0.0-SNAPSHOT/sapl-reference.html
https://sapl.io/docs/2.0.0-SNAPSHOT/sapl-reference.html
https://github.com/heutelbeck/sapl-server-lt-gitops-example
https://www.weave.works/blog/gitops-operations-by-pull-request

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 22

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

every pull request and breaks the pipeline run if policy tests are failing. Merging a pull request on

the main branch triggers automatic synchronization of the policies to a SAPL-Server-LT instance.

SAPL tests use Java. Therefore, it is impossible to use the SAPL test framework when deploying

SAPL-Server-Implementations with GUI-based PAP (i.e., SAPL-Server-CE or SAPL-Server-EE).

4.2 Unit-Tests

SAPL tests use JUnit for executing SAPL unit test cases. Each test is prepared by creating

SaplUnitTestFixture. This can be done in the @BeforeEachStep of a JUnit test case.

The SaplUnitTestFixture defines the name of the SAPL document under test or the path to its

file. In addition, the fixture sets up PIPs and FunctionLibrarys to be used during test execution.

 private SaplTestFixture fixture;

 @BeforeEach
 void setUp() throws InitializationException {
 fixture = new SaplUnitTestFixture("policyStreaming")
 //.registerPIP(...)
 .registerFunctionLibrary(new TemporalFunctionLibrary());
 }
Figure 10: Test fixture setup

4.3 Policy-Integration-Tests

Instead of testing a single SAPL document, all policies can be tested together using the PDP

interface, just like when an application uses an embedded PDP or a SAPL server.

The SaplIntegrationTestFixture manages these kinds of integrations tests.

 private SaplTestFixture fixture;

 @BeforeEach
 void setUp() {
 fixture = new SaplIntegrationTestFixture("policiesIT")
 .withPDPPolicyCombiningAlgorithm(
 PolicyDocumentCombiningAlgorithm.PERMIT_UNLESS_DENY
);
 }
Figure 11: Test fixture setup for integration tests

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 23

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

4.4 Writing test cases

The Step-Builder-Pattern is used for defining the concrete test case. It consists of the following

four steps:

1. Given-Step: Define mocks for attributes and functions

2. When-Step: Specify the AuthorizationSubscription

3. Expect-Step: Define expectations for generated AuthorizationDecision

4. Verify-Step: Verify the generated AuthorizationDecision

Figure 12: Test structure

Starting with constructTestCaseWithMocks() or constructTestCase() called on the fixture,

the test case definition process is started at the Given-Step or the When-Step.

A lot of examples showcasing the various features of this SAPL test framework can be found in

the demo project here.

https://github.com/heutelbeck/sapl-demos/tree/master/sapl-demo-testing/src/test/java/io/sapl/test

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 24

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

4.5 Code-Coverage Reports via the SAPL-Maven-Plugin

For measuring the policy code coverage of SAPL policies, developers can use the sapl-maven-

plugin to analyze the coverage and generate reports in various formats.

Currently, three coverage criteria are supported:

1. PolicySet Hit Coverage: Measures the percentage of PolicySets that were at least once

applicable to an AuthorizationSubscription in the tests.

2. Policy Hit Coverage: Measures the percentage of Policies that were at least once

applicable to an AuthorizationSubscription in the tests.

3. Condition Hit Coverage: Measures the percentage of conditions evaluated to true or false

during the tests. The number of conditions times two is compared with the number of

positively and negatively evaluated conditions.

5. HYBRID AUTHORIZATION PROTOTYPE

In preparation of the integration of the Authorization processes a prototype has been developed

to demonstrate the bridging between SAPL authorization and smart contracts using Ethereum.

Figure 13: Connecting Ethereum as a Policy Information Point

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 25

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

The goal of the integration is to enable the formulation of access control polices referencing the

state of the processes implemented in the smart contracts. To achieve this goal, properties of the

process related to subjects, actions, resources, and the environment must be accessible within

policies as attributes.

There are two pathways to making attributes accessible. First, the developer of the application

with a PEP can provide the attributes as part of the authorization subscription. This approach

requires the application to have full knowledge of the smart contracts state at time of access

control. In this case the attributes cannot be dynamic and will remain constant throughout the

lifetime of the subscription. Second, the PDP can be extended with dedicated policy information

points to access the smart contract’s state on demand. This has the advantage that attributes

from smart contracts can be dynamic and application developers are not required to know which

data from smart contracts is required for policy enforcement.

The first approach is supported by SAPL out-of-the-box and does not require any additional

development. For the second approach with attributes dynamically sourced from smart contracts

a generic Ethereum PIP has been developed, exposing Ethereum APIs via SAPL attributes. This

generic PIP is available on GitHub: https://github.com/heutelbeck/sapl-extensions/tree/main/sapl-

ethereum. Figure 13 provides an overview of the API and attributes exposed.

This approach has the drawback, that the policies will be primarily of technical nature, and the

domain language may be lost, making policies harder to write, understand and maintain. Ideally,

an organization using smart contracts in a SAPL-driven authorization process should implement

dedicated domain-specific PIPs, exposing attributes carrying the semantics of the smart contract

itself. A prototype for such in integration has been developed and is also available on GitHub:

https://github.com/heutelbeck/sapl-demos/tree/master/sapl-demo-ethereum. Here code for the

domain-specific PIP is generated directly from the solidity source code and wrapped in a PIP

service which can be linked to the PDP. This allows for a shared codebase between smart

contract authors and authorization infrastructure, making maintenance of the PIPs more efficient

and reliable.

https://github.com/heutelbeck/sapl-extensions/tree/main/sapl-ethereum
https://github.com/heutelbeck/sapl-extensions/tree/main/sapl-ethereum
https://github.com/heutelbeck/sapl-demos/tree/master/sapl-demo-ethereum

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 26

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

Figure 14: The Generic Ethereum PIP API

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 27

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

6. CONCLUSION

This deliverable described the overall authorization infrastructure of VPP4ISLANDS and the core

APIs of the SAPL policy engine.

At time of writing, the APIs and Smart Contracts are not fully defined yet. However, it is important

to first provide a stable platform for the cross-cutting authorization concerns which can be adopted

during API specification and policy definition. The APIs and components of the hybrid

authorization. Code examples and extensive documentation for all parts of the authorization

environment have been produced to allow easy adoption by the partners.

In addition, the development of the proof-of-concept prototype realizing a true hybrid authorization

bridging local authorization and potentially global DLTs with smart contracts on the base of

Ethereum has underlined the feasibility of the approach laid out in the proposal.

VPP4I can nor realize dynamic process-driven authorization to comply with the data protection

demands of all stakeholders by using the described approaches.

The next step is to train API developers of the project in the usage of the technologies (SAPL,

DLT). A first training event has been held by FTK in October 2021 and is now available for all

partners.

Furthermore, the Services of the VPP Node are beginning to take shape it is now important to

train the respective developers and to identify the specific protection needs of the sub-domains.

I.e., the Energy Management System Commitment Engine, Distributed Optimization Engine,

Balancing Service Provider, User Interface Module, Data Analytics, the Local Forecasting Engine,

and APIs exposing Node-level DB Information.

The key obstacle in achieving full integration of the authorization services and smart contracts will

be the reluctance of developers to adopt external software, as often authorization and other

security considerations are handled as an afterthought by developers which focus on

implementing their core domain processes. Also, the “not invented here” phenomenon is often

still prevalent. Therefore, in a first step the training efforts are key. Second, ensuring the actual

adoption of the services is more of a management issue than it is a technical one which has to be

addressed by establishing matching processes.

VPP4ISLANDS – D5.4: AAI Infrastructure API Specification and Prototype, version V1.2 03/05/2022 Page 28

This project has received funding from the European Union's Horizon 2020 research and innovation programme
under Grant Agreement n°957852

7. REFERENCES

Garner, R., Jansen, G., & Dehouche, Z. (2021). D2.4 - Concept Definition.

Heutelbeck, D. (2019). Attribute stream-based access control (ASBAC)-functional architecture

and patterns. International Conference on Security and Management (SAM), (pp. 182-

188).

Heutelbeck, D. (2019). The Structure and Agency Policy Language (SAPL) for Attribute Stream-

Based Access Control (ASBAC). International Workshop on Emerging Technologies for

Authorization and Authentication, (pp. 52-68).

